Pore-Scale Transport Resolved Model Incorporating Cathode Microstructure and Peroxide Growth in Lithium-Air Batteries

Charles Andersen\(^a\), Han Hu\(^b\), Gang Qiu\(^b\), Vibha Kalra\(^b\), and Ying Sun\(^b\)

\(^a\) Department of Mechanical Engineering and Mechanics, Drexel University
\(^b\) Department of Chemical and Biological Engineering, Drexel University

Motivation

Li-ion technology in electric vehicles is limited to ~100 miles. Li-air battery is an attractive high energy density alternative.

Methodology

- **Pore-scale modeling**
 - Li\(_2\)O\(_2\) Deposits
 - Continous BC
 - Simulation Domain:
 - Homogeneous continuum
 - Multiphase
 - Microstructures:
 - Volume-averaged
 - Fully resolved
 - Li\(_2\)O\(_2\) formation:
 - Porosity change
 - Explicitly modeled

- **Thickness dependent conductivity**
 - High conductivity for ultra-thin Li\(_2\)O\(_2\) layer due to electron tunneling

- **Peroxide growth modeling**
 - As reactions occur at the electrolyte/electrode interface Li\(_2\)O\(_2\) “fills up” each voxel during discharge

 - Li\(_2\)O\(_2\) grows when it reaches saturation concentration

Results

- **Effect of Li\(_2\)O\(_2\) Conductivity**
 - Porosity: 85%
 - Specific Surface Area: 100 m\(^2\)/g
 - Local current density: 2.5 mA/m\(^2\)
 - Constant conductivity doesn’t capture flat initial voltage and sudden voltage drop.

- **Effect of Applied Current**
 - Lower current density yields higher voltage and longer discharge time
 - A higher reaction rate constant improves the cell voltage.

- **Effect of Nanostructure Spacing**
 - Specific discharge capacity increases with nanostructure spacing.
 - Larger spacing prevents pore-blocking and loss of active area.

- **Effect of Nanostructure Height**
 - Larger nanostructure height yields higher voltage and larger specific capacity due to increased active surface area.

References

